Unit 1 AOS1 Physics: Coke Can Challenge

Applying principles of Conduction, Convection and Radiation

Scenario: Today is the hottest day of the year – its 42°C. You're thirsty and would love a can of coke, BUT there is no electricity and your fridge and freezer aren't working.

The only chance you have of obtaining your delicious beverage is if you cool it yourself. But no need to worry because you have been learning about Thermodynamics in Physics so you can use your knowledge of conduction, convection radiation to cool the coke can.

You will need to select from a limited range of materials to make a fridge.

There are two awards:

Coke Can Cooler Award - The group who can get the cool can to the lowest temperature will be the winner and will gain one can of coke per group member.

16 cm aluminium foil

20 cm foam insulation

20 cm bubble wrap

Thermodynamics Genius Award – The group who can embed the most thermochemical principals into their design. Each thermochemical idea is awarded one point.

Materials

You can choose 6 out of these 11 materials:

150 g lce (150 g)

5 g Salt (5 g) zip lock bag x foam peanuts

10 L Bucket

30 cm plastic wrap

Materials required by each group

- timer

temperature probe

10 4

- can of drink

2 L water

small plastic container

Procedure

The challenge is divided into three phases; design, build and test.

Design

You have 20 minutes to design your fridge. During this tim, e you will select your materials and draw a diagram to show your design. You will need to explain where you have used the ideas of conduction, convection and radiation in your design.

Build

You will have 10 minutes to construct your fridge. During this part of the challenge you will use all the materials except the Coke can in the construction of your fridge.

Test

You will have 10 minutes to test your fridge. You will put the can into the fridge along with a temperature probe and monitor the change in temperature.

Mana

Design THERMODINAMICS APPLY WORK BUBBLE RAP IS A COOD INJULATOR REFLECTS 3. heat. aluminum OC 10. ice 0015.

Flynn & Jacob

Unit 1 AOS1 Physics: Coke Can Challenge

Applying principles of Conduction, Convection and Radiation

Scenario: Today is the hottest day of the year – its 42°C. You're thirsty and would love a can of coke, BUT there is no electricity and your fridge and freezer aren't working.

The only chance you have of obtaining your delicious beverage is if you cool it yourself. But no need to worry because you have been learning about Thermodynamics in Physics so you can use your knowledge of conduction, convection radiation to cool the coke can.

You will need to select from a limited range of materials to make a fridge.

There are two awards;

Coke Can Cooler Award - The group who can get the cool can to the lowest temperature will be the winner and will gain one can of coke per group member.

Thermodynamics Genius Award – The group who can embed the most thermochemical principals into their design. Each thermochemical idea is awarded one point.

Materials

You can choose 6 out of these 11 materials:

- **16**0 g Ice (150 g)

15 cm aluminium foil*

- 10g Salt (5 g) -

1 x zip lock bag

= 10 L Bucket

20 x foam peanuts

- 2 L water

20 cm foam insulation *

30 cm plastic wrap

20 cm bubble wrap 🐇

Materials required by each group

- temperature probe
- timer
- can of drink

small plastic container

Procedure

The challenge is divided into three phases; design, build and test.

Design

You have 20 minutes to design your fridge. During this tim,e you will select your materials and draw a diagram to show your design. You will need to explain where you have used the ideas of conduction, convection and radiation in your design.

Build

You will have 10 minutes to construct your fridge. During this part of the challenge you will use all the materials except the Coke can in the construction of your fridge.

Test

You will have 10 minutes to test your fridge. You will put the can into the fridge along with a temperature probe and monitor the change in temperature.

· Salt and ice react which reduces the melting point and temperature of ice. This means more heat is taken from the can to the ice because the temperature difference is higher. This is the conduction of heat.

The aluminium foil wrapped around the ire helps to reflect heat energy from outside the cole can instead of absorbing it. This will minimise the amount of cadrated heat reaching the can.

The bubble wrap stops the conduction of heaf energy levely trapping it in the air pockets. This reduces the heat that reaches the example and can.

The instalation foeum traps the circulating air which is aging through the process of convections. This keeps

the cooler out closer to the can

Unit 1 AOS1 Physics: Coke Can Challenge

Applying principles of Conduction, Convection and Radiation

Scenario: Today is the hottest day of the year – its 42°C. You're thirsty and would love a can of coke, BUT there is no electricity and your fridge and freezer aren't working.

The only chance you have of obtaining your delicious beverage is if you cool it yourself. But no need to worry because you have been learning about Thermodynamics in Physics so you can use your knowledge of conduction, convection radiation to cool the coke can.

You will need to select from a limited range of materials to make a fridge.

There are two awards;

Coke Can Cooler Award - The group who can get the cool can to the lowest temperature will be the winner and will gain one can of coke per group member.

Thermodynamics Genius Award – The group who can embed the most thermochemical principals into their design. Each thermochemical idea is awarded one point.

Materials

You can choose 6 out of these 11 materials:

900 150 g Ice (150 g)

- 15 cm aluminium foil

10 cy 5 g Salt (5 g)

1 x zip lock bag

- 10 L Bucket

20 x foam peanuts

2 L water30 cm plastic wrap

20 cm foam insulation

- small plastic container

20 cm bubble wrap

Materials required by each group

- temperature probe
- timer
- can of drink

-10 litre bucket

Procedure

The challenge is divided into three phases; design, build and test.

Design

You have 20 minutes to design your fridge. During this tim,e you will select your materials and draw a diagram to show your design. You will need to explain where you have used the ideas of conduction, convection and radiation in your design.

Build

You will have 10 minutes to construct your fridge. During this part of the challenge you will use all the materials except the Coke can in the construction of your fridge.

Test

You will have 10 minutes to test your fridge. You will put the can into the fridge along with a temperature probe and monitor the change in temperature.

We are wrapping the design in insolutive form which will also trop the heat and been wheat its surrounded in at a cool temperature.

The ice and water and scall will help to cover the sortacle area of the can which will assist in the time in think it cods as the conductive material is alle to take the cold temperature in all coopers.

goses and traps the cool ogises with coursing a cool temp

The and can of its the same tamp it will mether than at equilibrium of ice.

Aaron Ram + Xaanula h

Unit 1 AOS1 Physics: Coke Can Challenge

Applying principles of Conduction, Convection and Radiation

Scenario: Today is the hottest day of the year – its 42°C. You're thirsty and would love a can of coke, BUT there is no electricity and your fridge and freezer aren't working.

The only chance you have of obtaining your delicious beverage is if you cool it yourself. But no need to worry because you have been learning about Thermodynamics in Physics so you can use your knowledge of conduction, convection radiation to cool the coke can.

You will need to select from a limited range of materials to make a fridge.

There are two awards;

Coke Can Cooler Award - The group who can get the cool can to the lowest temperature will be the winner and will gain one can of coke per group member.

Thermodynamics Genius Award – The group who can embed the most thermochemical principals into their design. Each thermochemical idea is awarded one point.

Materials

You can choose 6 out of these 11 materials:

150 g lce (150 g)

15 cm aluminium foil

5 g Salt (5 g)

1 x zip lock bag

10 L Bucket2 L water

20 x foam peanuts20 cm foam insulation

20 cm bubble wrap

- 30 cm plastic wrap

- small plastic container

Materials required by each group

- temperature probe
- timer
- can of drink

Procedure

The challenge is divided into three phases; design, build and test.

Design

You have 20 minutes to design your fridge. During this tim,e you will select your materials and draw a diagram to show your design. You will need to explain where you have used the ideas of conduction, convection and radiation in your design.

Build

You will have 10 minutes to construct your fridge. During this part of the challenge you will use all the materials except the Coke can in the construction of your fridge.

Test

You will have 10 minutes to test your fridge. You will put the can into the fridge along with a temperature probe and monitor the change in temperature.

Design

-Bucket stanting insulation from insulation insulation

The aluminum foil will be timed reflective - Side out which will hemsely namic principles:

- 1) Increasing the surface area of the ice by crushing it, (velotime to the volume of the ice when un-crushed), increasing the number of perticles involved in the transfer process, hence increasing the rate of conduction (cooling).
- 2) Newton's Law of cooling states that the rest entwhich an object cools is proportional to the difference in temperature between the object and the objects surroundings. Therefore, the sait decreasing the shelzing point of the water and ite, will be colder, and hence increase this difference of the temperature of the cake can and its growndings (i.e. + wester).
- 3) Thicke materials require a greater number of collisions behover pourticles or movement of electrons to transfer energy from one side to another, hence using a foam insulation most, which is a thick material, hence using a foam insulation most, which is a thick material, hence using a foam insulation or greate number of collisions caused by the "hotter cole can, in with his surroundings.

 4) The longer a material's themal conductivity, the more rapidly (haill conduct hear energy. Aluminim being a highly conductive, thermally, ensures that it will make the coke can cooler, quicker.

wichael M & Nich R

Unit 1 AOS1 Physics: Coke Can Challenge

Applying principles of Conduction, Convection and Radiation

Scenario: Today is the hottest day of the year – its 42°C. You're thirsty and would love a can of coke, BUT there is no electricity and your fridge and freezer aren't working.

The only chance you have of obtaining your delicious beverage is if you cool it yourself. But no need to worry because you have been learning about Thermodynamics in Physics so you can use your knowledge of conduction, convection radiation to cool the coke can.

You will need to select from a limited range of materials to make a fridge.

There are two awards;

Coke Can Cooler Award - The group who can get the cool can to the lowest temperature will be the winner and will gain one can of coke per group member.

Thermodynamics Genius Award – The group who can embed the most thermochemical principals into their design. Each thermochemical idea is awarded one point.

Materials

You can choose 6 out of these 11 materials:

- 150 g Ice (150 g)

15 cm aluminium foil

- 5 g Salt (5 g)

1 x zip lock bag

- 10 L Bucket

20 x foam peanuts

- 2 L water

20 cm foam insulation

- 30 cm plastic wrap

20 cm bubble wrap

Materials required by each group - 10 L weeks

- temperature probe

- timer

- can of drink

- small plastic container

The challenge is divided into three phases; design, build and test.

Design

Procedure

You have 20 minutes to design your fridge. During this tim,e you will select your materials and draw a diagram to show your design. You will need to explain where you have used the ideas of conduction, convection and radiation in your design.

Build

You will have 10 minutes to construct your fridge. During this part of the challenge you will use all the materials except the Coke can in the construction of your fridge.

Test

You will have 10 minutes to test your fridge. You will put the can into the fridge along with a temperature probe and monitor the change in temperature.

aluminium foil

aluminium foil

bulle way

ille in 17 pading vent b

Unit 1 AOS1 Physics: Coke Can Challenge

Applying principles of Conduction, Convection and Radiation

Scenario: Today is the hottest day of the year – its 42°C. You're thirsty and would love a can of coke, BUT there is no electricity and your fridge and freezer aren't working.

The only chance you have of obtaining your delicious beverage is if you cool it yourself. But no need to worry because you have been learning about Thermodynamics in Physics so you can use your knowledge of conduction, convection radiation to cool the coke can.

You will need to select from a limited range of materials to make a fridge.

There are two awards;

Coke Can Cooler Award - The group who can get the cool can to the lowest temperature will be the winner and will gain one can of coke per group member.

Thermodynamics Genius Award – The group who can embed the most thermochemical principals into their design. Each thermochemical idea is awarded one point.

Materials

You can choose 6 out of these 11 materials:

- 1500g Ice (150 g) 200c

26cm aluminium foil 1 x zip lock bag

- %g Salt (%g) (0 g

20 x foam peanuts

- 2 L water

- 20 cm foam insulation

20 cm bubble wrap

- 30 cm plastic wrap

small plastic container

Materials required by each group

- temperature probe
- timer
- can of drink

Procedure

The challenge is divided into three phases; design, build and test.

Design

You have 20 minutes to design your fridge. During this tim,e you will select your materials and draw a diagram to show your design. You will need to explain where you have used the ideas of conduction, convection and radiation in your design.

Build

You will have 10 minutes to construct your fridge. During this part of the challenge you will use all the materials except the Coke can in the construction of your fridge.

Test

You will have 10 minutes to test your fridge. You will put the can into the fridge along with a temperature probe and monitor the change in temperature.

